
PktAnon Manual
Generic Framework for Profile-based Traffic Anonymization

build date June 26, 2008

Institute of Telematics
University of Karlsruhe

Christoph P. Mayer, Thomas Gamer, Dr. Marcus Schöller

Contact: mayer@tm.uka.de
Web: www.tm.uka.de/pktanon

Institut für Telematik

mailto:mayer@tm.uka.de

Contents

1 Introduction 1

2 Anonymization primitives 3

3 Supported protocols 7

4 Anonymization profiles 9

4.1 Settings . 9

4.1.1 Flow . 9

4.1.2 Misc . 9

4.1.3 Checksumming . 10

4.2 AnonMappings . 11

4.3 Predefined profiles . 11

4.3.1 Exemplary anonymization profile 12

5 Using PktAnon 15

5.1 Compiling PktAnon . 15

5.2 Running PktAnon . 16

5.3 I/O Piping with PktAnon . 16

6 Extending PktAnon 17

6.1 Integrating additional protocols . 17

6.1.1 Interfaces . 17

6.1.2 Implementation . 19

6.1.3 Integration . 21

6.1.3.1 Packet factory . 21

6.1.3.2 Packet transformation 22

iv Contents

6.1.3.3 Anonymization primitive configuration 23

6.2 Integrating additional anonymization primitives 23

6.2.1 Writing the primitive . 24

6.2.2 Integrating the primitive . 24

1. Introduction

Computer network researchers, system engineers and network operators have an
increasing need for network traces. These are necessary to build and evaluate com-
munication systems. This ranges from developing intrusion detection systems over
evaluating network protocols or system design decisions, up to education in network
security. Unfortunately, availability of real-world traces is very scarce, mainly due to
privacy and security concerns. Making recorded data anonymous helps to mitigate
this problem. Available anonymization systems, however, do not provide sufficient
flexibility, extensibility or ease of use.

Therefore, we developed PktAnon—a generic framework for network traffic anonymiza-
tion. PktAnon aims at enabling wide-spread use of realistic network traffic traces
by providing fine-grained, profile-based anonymization of network traffic traces. It
can easily be configured by anonymization profiles, which are used to define how the
network traffic should be made anonymous. Such profiles ensure an easy adapta-
tion of the information actually being made anonymous to different environments or
local legislation. Furthermore, our framework supports flexible application of arbi-
trary anonymization primitives to every protocol field. Due to its extensibility our
framework provides an easy incorporation of new anonymity-enhancing techniques,
too. Additionally, it prevents accidental disclosure of private data by applying a
technique called defensive transformation. Finally, it can be used for online as well
as offline anonymization of network traffic.

Further reading

The following publications covering PktAnon exist:

• PktAnon: A Generic Framework for Profile-based Traffic Anonymiza-
tion, Thomas Gamer, Christoph P. Mayer and Marcus Schöller, PIK Praxis
der Informationsverarbeitung und Kommunikation, 2/2008.

• Datenschutzkonforme Anonymisierung von Datenverkehr auf einem
Vermittlungssystem, Thomas Gamer, Christoph P. Mayer and Marcus Schöller,
Vortrag auf dem 2. Essener Workshop ”‘Neue Herausforderungen in der Net-
zsicherheit”’ an der Universität Duisburg/Essen, October 2006.

2 1. Introduction

• Datenschutzkonforme Anonymisierung von Datenverkehr auf einem
Vermittlungssystem, Christoph P. Mayer, Bachelor Thesis, Institute of Telem-
atics, University of Karlsruhe, July 2006.

Disclaimer

PktAnon comes with no warranty! Use it at your own risk. Please note that PktAnon
is currently under development and not in a final state.

2. Anonymization primitives

PktAnon supports a large number of predefined anonymization primitives which can
be mapped to protocol attributes using XML-based profiles (see Section 4). Extend-
ing PktAnon by additional anonymization primitives is described in Section 6.2.

Table 2.1 shows the currently available anonymization primitives and their according
parameters that have to be specified. Every anonymization primitive can be applied
to every protocol attribute, therefore allowing high flexibility in defining anonymiza-
tion profiles. The available anonymization profiles in the following are explained in
alphabetical order.

PktAnon is able to recalculate all length and checksum fields when reassembling
packets after anonymization. Therefore, the resulting network trace is completely
well-formed. This holds true even if the AnonShorten primitive is applied on some
protocol attributes.

PktAnon additionally supports chaining of anonymization primitives. This way, spe-
cial handling e. g. for broadcast IP and MAC addresses can be achieved. Considering
n linearly chained anonymization primitives a1, . . . , an, the anonymization primi-
tive ai+1 is called only if the anonymization primitive ai returns true. Otherwise,
processing of the primitive chain is aborted.

AnonIdentity

Every supported protocol attribute must be assigned an anonymization primitive
in the anonymization profile in order to prevent configuration errors where protocol
attributes are simply forgotten to be specified. Thus, protocol attributes that are
meant not to be made anonymous also need to have an anonymization primitive
assigned. In this case the AnonIdentity primitive is suitable since it just preserves
the original data.

AnonBroadcastHandler

This special handler is used to prevent anonymization of broadcast IP and MAC
addresses. Addresses having all bits set to 1 are identified as broadcast addresses

4 2. Anonymization primitives

in a generic manner. Since PktAnon can handle chains of anonymization primitives
for a single protocol attribute, application of this primitive in front of the normal
anonymization primitives will prevent anonymization of broadcast addresses and
perform anonymization on all other addresses.

AnonShorten

This anonymization primitive can be used to shorten or completely remove optional
protocol attributes. IP Options are a common example. A further example is pay-
load data. Such data can be removed by application of the AnonShorten primitive.
The new length of the data must be specified in the anonymization profile. If 0 is
specified as new length data is completely removed. This anonymization will fail if
the protocol item is not optional and therefore, can not be shortened.

AnonConstOverwrite

This anonymization primitive overwrites each byte of the data with a constant byte
value. This value must be specified in the anonymization profile.

AnonContinuousChar

In contrast to the AnonConstOverwrite anonymization primitive that overwrites
each byte of the complete data with a constant value, this primitive uses a contin-
uously incremented byte value. Therefore, the output is a series of bytes, each byte
having an incremented decimal value.

AnonRandomize

This anonymization primitive replaces each byte of the data with random byte val-
ues.

AnonShuffle

This anonymization primitive manipulates the data by shuffling the single bytes of
the data randomly. Therefore, the original bytes are preserved but the order of the
bytes is manipulated.

AnonWhitenoise

This anonymization primitive adds noise on bit-level. The complete data is inter-
preted as an array of bits. The strength value specified in the anonymization profile,
defines the percentage of bits that are randomly chosen and toggled in steps of 10%,
i. e. a value of 3 toggles 30% of the data bits randomly.

AnonBytewiseHashSha1

This anonymization primitive applies a hash function on each byte of the data using
SHA1. The resulting hash value in this case is truncated to a length of one byte.

AnonHashSha1

This anonymization primitive applies a hash function on the complete data using
SHA1. The resulting hash value is truncated to the actual length of the buffer.

5

AnonBytewiseHashHmacSha1

This anonymization primitive applies an HMAC-SHA1 hash on each byte of the
data. A key for the HMAC must be specified in the anonymization profile. The
resulting hash value in this case is truncated to a length of one byte.

AnonHashHmacSha1

The AnonHashHmacSha1 anonymization is similar to the AnonBytewiseHashSha1
anonymization primitive. It, however, hashes the complete buffer using HMAC-
SHA1 instead of each single byte. The HMAC needs a key which must be specified
in the anonymizationprofile. The resulting hash value is truncated to the actual
length of the buffer.

AnonCryptoPan

This is a prefix-preserving anonymization that was developed by Fan et al 1. It needs
an input key for the Rijandel encryption scheme. This anonymization primitive has
the property to preserve the prefixes of any two addresses on a bit-wise basis.

1Jinliang Fan and Jun Xu and Mostafa H. Ammar and Sue
Moon, Cryptography-based Prefix-preserving Anonymization, http://www-
static.cc.gatech.edu/computing/Networking/projects/cryptopan, 2004

6 2. Anonymization primitives

Name Parameters Description

AnonIdentity - Preserve original data.
AnonBroadcastHandler - Preserve broadcast IP or MAC ad-

dresses.
AnonShorten newlen Cut the buffer to the given length.
AnonConstOverwrite anonval Overwrite every byte with the pro-

vided value, given in hex (e. g.
0x00).

AnonContinuousChar - Overwrite every byte with continu-
ous values.

AnonRandomize - Overwrite each byte with a random
value

AnonShuffle - Shuffle the bytes of the buffer ran-
domly.

AnonWhitenoise strength Apply bit-based noise of strength
between 1 and 10.

AnonBytewiseHashSha1 Hash every byte separately with
SHA1. The

AnonHashSha1 - Hash the complete buffer with
SHA1.

AnonBytewiseHashHmacSha1 key Hash every byte separately with
HMAC-SHA1. The tt key param-
eter is needed as key input for the
HMAC.

AnonHashHmacSha1 key Hash the complete buffer with
HMAC-SHA1. The tt key param-
eter is needed as key input for the
HMAC.

AnonCryptoPan key Prefix-preserving anonymization.
The key parameter is needed
for the for Rijandel algorithm
used inside the prefix-preserving
anonymization.

Table 2.1: Overview of anonymization primitives in PktAnon

3. Supported protocols

PktAnon supports a large number of network protocols. Every protocol attribute
can be made anonymous using one of the anonymization primitives described in
Section 2. Table 3.1 shows a complete list of protocol and attribute names that
currently can be used in an anonymization profile.

8 3. Supported protocols

Protocol Attribute Description

EthernetPacket MacSource the source mac address
MacDest the destination mac address
MacType the type attribute which specified the

next higher protocol
ArpPacket ArpHardwaretp hardware type

ArpPrototp protocol type
ArpHardwareaddrlen hardware address length
ArpProtoaddlen protocol address length
ArpOpcode opcode
ArpSourcemac source mac address
ArpSourceip source ip address
ArpDestmac destination mac address
ArpDestip destination ip address

IpPacket IpTos type of service
IpIdent identifier
IpFragoffset fragmentation offset
IpFlags ip flags
IpTtl time to live
IpSourceip source ip address
IpDestip destination ip address
IpOptions ip options

Ipv6Packet Ipv6Trafficclass traffic class
Ipv6Flowlabel flow label
Ipv6Hoplimit hop limit
Ipv6Sourceaddr source address
Ipv6Destaddr destination address

UdpPacket UdpSourceport the source port
UdpDestport the dest port

TcpPacket TcpSourceport the source port
TcpDestport the dest port
TcpSeqnum sequence number
TcpAcknum ack number
TcpFlags flags
TcpWindowsize window size
TcpUrgentpnt urgent pointer
TcpOptions tcp options

IcmpPacket IcmpType type
IcmpCode code
IcmpMisc misc, depending on type and code

PayloadPacket PayloadPacketData the data

Table 3.1: Supported network protocols and protocol attributes in PktAnon

4. Anonymization profiles

PktAnon uses anonymization profiles for configuration. These profiles are based on
XML and contain all information necessary for the anonymization process. This
includes information about traffic source, mapping of anonymzation primitives to
protocol attributes, and other things like runtime measurement.

The structure of the anonymization profile is explained in this section. It consists
of two main parts: Settings and AnonMappings. The Settings module contains
XML elements for specification of general information. The actual anonymization
configuration is defined in the AnonMappings module. A detailed example of such
an anonymization profile is given in Section 4.3.1.

4.1 Settings

The Settings module contains basic information about the anonymization process,
e. g. the traffic source, general settings like checksum handling, or which runtime
information should be gathered and displayed.

4.1.1 Flow

The Flow submodule contains traffic source and sink of the anonymization process.
The Input and Output configuration items can either be file names or the predefined
keywords stdin or stdout, respectively. This allows for several combinations of files
and/or standard input/output streams to be handled.

4.1.2 Misc

The Misc submodule contains the following configuration items deciding on handling
of runtime information:

• UseMeasure: Boolean value (0|1) indicating whether runtime information should
be gathered. PktAnon supports measurement of runtime information like bytes
or packets per second that were processed by the anonymization process. If
UseMeasure is set, the configuration item MeasureFile has to be specified,
too.

10 4. Anonymization profiles

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 50000 100000 150000 200000 250000 300000

R
ea

d
da

ta
 [b

yt
e/

s]

Block size [byte]

Affect of block sizes to read operations

Figure 4.1: Effect of read block size in hard disc system read.

• MeasureFile: File name of the file gathered runtime information is stored in.
Only considered if UseMeasure is set.

• CreatePlot: If UseMeasure is set and a MeasureFile is given, this boolean
option (0|1) enables creation of a live plot. Therefore, the gnuplot software is
used to plot the runtime information collected.

• PrintPackets: Boolean value (0|1) indicating whether each original and anony-
mous packet should be printed to console in human readable format.

• SingleStepping: Boolean value (0|1) indicating that after each anonymous
packet the user must press any key to continue anonymization. This option is
only sensible in combination with PrintPackets and can be used for debugging
purposes.

• BlockSizeRead: Size of the blocks to read during a single read system call. A
default block size of 1024 is used if this value is not set explicitely.

• BlockSizeWrite: Same as BlockSizeRead for write system calls instead of
read.

The SingleStepping option is best used in combination with PrintPackets. This
allows direct visual inspection of original and anonymous packets.

The BlockSizeRead and BlockSizeWrite sizes can affect performance of anonymiza-
tion. Often, speed of the hard disc is the limiting factor in anonymization. Figure 4.1
shows the data rate of read calls dependant on the block size used. Thus, we can
see that a good choice of the block size for read calls highly effects performance.

4.1.3 Checksumming

The Checksumming submodule defines how checksums are handled. The settings of
this submodule are applied to all checksums of the complete packet.

4.2. AnonMappings 11

• ReCalculateChecksums: Boolean value (0|1) which specifies wether a packet’s
checksums are recalculated after anonymization.

• SetBadChecksumsToBad: Boolean value (0|1) that indicates if checksums are
validated before anonymization of the original protocol. If a checksum is in-
valid in the original protocol, the checksum is set to a random value in the
anonymous protocol. Only sensible in combination with ReCalculateCheck-

sums.

If ReCalculateChecksums is not set, anonymous protocol checksums will be set to
the original checksum, which will most likely not be correct.

4.2 AnonMappings

The AnonMappings module contains the mappings of anonymization primitives to
protocol attributes. In this section, we explain the general structure of this module.
Section 4.3.1 gives a detailed example of a configuration file containing both sections
Settings and AnonMappings.

One submodule entry exists within the AnonMappings module for each supported
protocol. The name of the submodule depends on the name of the protocol parser for
this protocol. In case of the ethernet protocol, for example, the submodule is named
EthernetPacket: <submodule name="EthernetPacket">. Each configuration item
within a submodule defines a single mapping of an anonymization primitive to a pro-
tocol attribute, e. g. <configitem anon="AnonBytewiseHashSha1" name="MacSource"/>.

4.3 Predefined profiles

A set of predefined profiles can be found in the folder profiles of the PktAnon
distribution. In all these profiles the configuration items Infile and Outfile are
filled with a placeholder. Checksums are defined to be recalculated and to be re-set
to bad. The predefined profiles contained are the following:

• settings_identity.xml: An anonymization profile that uses the anonymiza-
tion primitive AnonIdentity for every protocol attribute. This means that all
data of the original traffic is just copied into the anonymous traffic without
changes. In this case NO anonymization is achieved. This profile could be
used as a template for definition of new anonymization profiles.

• settings_low.xml: An anonymization profile with low security that performs
anonymization of IPv4 and IPv6 addresses in IPv4, IPv6, and ARP protocols
by applying the primitive AnonBytewiseHashSha1. In addition, it makes ap-
plication data anonymous by overwriting each byte with 0x00.

• settings_medium.xml: An anonymization profile with medium security that
makes the following protocol attributes anonymous:

– IPv4 and IPv6 addresses in IPv4, IPv6, and ARP protocols using the
primitive AnonBytewiseHashHmacSha1 and the key KEY.

12 4. Anonymization profiles

– MAC addresses in Ethernet and ARP protocols using the primitive Anon-
BytewiseHashSha1.

– IPv4 Type-of-Service attribte (ToS) is overwritten by 0x00.

– IPv4 Time-to-live attribute (TTL) and IPv6 hop limit attribute by ap-
plying AnonWhitenoise with a strength of 3.

– IPv4 and TCP options are completely removed by the primitive Anon-

Shorten with a new length of 0.

– UDP and TCP ports are made anonymous by AnonBytewiseHashSha1.

– TCP urgent pointer attribute is overwritten by 0x00.

– Application data (PayloadPacket is completely removed by AnonShorten.

• settings_high.xml: An anonymization profile with high security. It differs
from the previous medium anonymization profile in the following tasks:

– HMAC-based (key-based) anonymization is applied to MAC addresses as
well as TCP and UDP ports instead of normal hashing.

– IPv4 and IPv6 addresses are hashed completely by HMAC-SHA1 instead
of bytewise.

– The TCP attributes sequence number, acknowledge number, and window
size are made anonymous by AnonWhitenoise.

WARNING:
The anonymization profiles distributed with PktAnon are
for learning purposes only! Defining an anonymization pro-
file that suits your needs most likely needs input from net-
work operators, security experts, and lawyers!

4.3.1 Exemplary anonymization profile

In this example the anonymization profile settings_medium.xml will be explained.
An anonymization profile is always enclosed by the triggerconf tag.

<triggerconf>

...

</triggerconf>

The first part of the profile is the Settings module:

<module name="Settings">

<submodule name="Flow">

<configitem name="Input">INFILE</configitem>

<configitem name="Output">OUTFILE</configitem>

</submodule>

<submodule name="Misc">

4.3. Predefined profiles 13

<configitem name="UseMeasure">0</configitem>

<configitem name="MeasureFile"></configitem>

<configitem name="CreatePlot">0</configitem>

<configitem name="PrintPackets">0</configitem>

<configitem name="SingleStepping">0</configitem>

<configitem name="BlockSizeRead"></configitem>

<configitem name="BlockSizeWrite"></configitem>

</submodule>

<submodule name="Checksumming">

<configitem name="ReCalculateChecksums">1</configitem>

<configitem name="SetBadChecksumsToBad">1</configitem>

</submodule>

</module>

INFILE and OUTFILE are just placeholders for your traffic source and sink, respec-
tively. Offline and online traffic can be used for input. Output also can be directed
to different destinations. A trace file recorded with tcpdump, for example, can be
used as traffic source. Output then can be written into a file in tcpdump format,
too:

<submodule name="Flow">

<configitem name="Input">/home/guest/recordedtrace.pcap</configitem>

<configitem name="Output">/home/guest/anonymoustrace.pcap</configitem>

</submodule>

PktAnon also supports input and output piping (see Section 5.3 for detailed expla-
nation). The configuration for input piping looks like:

<submodule name="Flow">

<configitem name="Input">stdin</configitem>

<configitem name="Output">/home/guest/anonymizedtrace.pcap</configitem>

</submodule>

In case original traffic data should be written from a file and piped to another
program after anonymization, the following configuration could be used:

<submodule name="Flow">

<configitem name="Input">/home/guest/recordedtrace.pcap</configitem>

<configitem name="Output">stdout</configitem>

</submodule>

For explanation of the other configuration items in the exemplary Settings module
refer to Section 4.1.2.

The complete mapping of anonymization primitives to protocol attributes is encap-
sulated in the AnonMappings tag:

<module name="AnonMappings">

...

</module>

14 4. Anonymization profiles

Every supported protocol is defined in a submodule with the name item set to the
name of the protocol parser, e. g.:

<submodule name="EthernetPacket">

...

</submodule>

Inside of such a submodule environment the mapping of protocol attributes to
anonymization primitives is specified by configuration items. The supported pro-
tocols and their according attributes are listed in Table 3.1. Currently supported
anonymization primitives are shown in Table 2.1. Thus, the mapping of the anonymiza-
tion primitive AnonBytewiseHashSha1 to the protocol attribute MacSource of the
Ethernet protocol looks like:

<configitem anon="AnonBytewiseHashSha1" name="MacSource"/>

The field anon is predefined for the anonymization primitive that should be applied.
The field name is predefined for the protocol attribute the anonymization primitive
is applied to. The complete Ethernet anonymization part in our exemplary profile
looks as follows:

<submodule name="EthernetPacket">

<configitem anon="AnonBytewiseHashSha1" name="MacSource"/>

<configitem anon="AnonBytewiseHashSha1" name="MacDest"/>

<configitem anon="AnonIdentity" name="MacType"/>

</submodule>

Some anonymization primitives need additional parameters, e. g. a key for HMAC-
SHA1 (see Table 2.1). Using the primitive AnonBytewiseHashHmacSha1 for anonymiza-
tion of the Ethernet attribute MacSource could be done using the following config-
uration:

<configitem anon="AnonBytewiseHashHmacSha1" key="K3Y!" name="MacDest"/>

The value K3Y! is the key used in this HMAC-SHA1 anonymization.

5. Using PktAnon

5.1 Compiling PktAnon

Compiling and (optionally) installing PktAnon is done using the autotools build
environment:

1. Open a console

2. Create a new folder
mkdir pktanon

and download PktAnon into this folder
cd pktanon

wget http://www.tm.uka.de/pktanon/download/pktanon-1.2.0-dev.tar.gz

3. Unzip the tar.gz archive
tar xzf ./pktanon-1.2.0-dev-tar.gz

4. Change into the new folder created by unzipping
cd ./pktanon-1.2.0-dev

5. PktAnon depends on Boost and Xercesc which must be installed on your sys-
tem. If you are working on a debian-based system, you can install these li-
braries by typing
sudo apt-get install libxerces27-dev libboost-dev

6. Prepare compiling of PktAnon
./configure

7. Compile PktAnon
make

8. To install PktAnon on your system type
sudo make install

16 5. Using PktAnon

5.2 Running PktAnon

Usage of PktAnon is quite simple. The pktanon binary needs a single parameter
– the file name of the configuration profile. This file specifies all necessary infor-
mation like traffic source or anonymization mappings. If the anonymization profile
settings_high.xml, which was previously described, should be applied, PktAnon
is started by

./pktanon profiles/settings_high.xml

5.3 I/O Piping with PktAnon

PktAnon supports piping of input traffic into PktAnon. This is necessary in order to
achieve online anonymization, i. e. ,live traffic is captured with tcpdump and directly
piped into PktAnon. In addition, piping of input traffic can be used to filter traffic
using tcpdump parameters. In order to use piping, the configuration item Input of
the configuration file’s Flow module must be set to stdin (see Section 4.1.1). The
following command, then, will capture live traffic from network interface eth0 and
pipe it into PktAnon for anonymization:

tcpdump -i eth0 -s 0 -w - | pktanon ./settings.xml

The output destination of the data made anonymous is independent of the input.
Therefore, this can be either a file or the standard output stream. A use case for
standard output is replaying anonymous data by using the tool tcpreplay. In this
use case traffic is made anonymous by PktAnon and then replayed using tcpreplay.
Therefore, the configuration item Output in the configuration file’s Flow module
must be set to stdout.

The following command can be used to read input traffic from a trace file, make it
anonymous, and replay it, e. g. into another that is connected to the interface eth2:

pktanon ./settings.xml | tcpreplay -i eth2

6. Extending PktAnon

This chapter will explain how to extend PktAnon by additional protocol parsers
(see Section 6.1) and additional anonymization primitives (see Section 6.2). The
design of PktAnon allows for easy integration of new primitives and protocols. If
you are extending PktAnon please contact the developers in order to integrate these
extensions into the PktAnon release.

6.1 Integrating additional protocols

Writing of an additional protocol parser is explained exemplarily by analyzing the
UDP protocol parser of PktAnon. The following Section will guide you through the
development of an additional protocol parser. Please note that PktAnon currently
supports protocol parsers up to transport layer. Writing application layer parsers
needs special support that will be integrated into PktAnon in the future.

6.1.1 Interfaces

The UDP protocol parser is defined in UdpPacket.h and implemented in UdpPacket.cpp.
Source files of protocol parsers can be found in the folder src/packets. The
UdpPacket class is derived from the virtual Packet base class and implements packet
parsing and packet assembling mechanisms for UDP. Each new protocol class derived
from the Packet class must implement the following methods, which are defined as
virtual in the base class:

bool parsePacket ()

void assemblePacket ()

string toString ()

unsigned int getMinProtocolSize ()

The parsePacket method is called whenever a lower layer protocol indicates UDP
as subsequent protocol. In this case a byte buffer that requires parsing is given to
this method. The task of the protocol parser is to gather all protocol attributes and
provide them using get/set methods.

18 6. Extending PktAnon

After completion of the anonymization process assembling—a task contrary to parsing—
of protocol attributes is required. in order to put together a well-formed byte buffer.
This buffer is written back to the output destination. Assembling must be performed
in the assemblePacket method by the protocol parser.

PktAnon provides—for debugging and learning purposes—the possibility to print
out single networks packets while operating (see Section 4.1). Therefore, each pro-
tocol parser must implement the toString method for providing a textual represen-
tation of the packet contents.

As a last mandatory method each protocol parser must implement the method
getMinProtocolSize. This method has to return the constant value of the minimal
size the implemented protocol requires. The minimal size of UDP is 8 bytes. The
IP protocol, e. g. has a minimal size of 20 bytes but actually can be larger due to
variable-length IP options.

We will now look into the implementation of this mandatory functionality, start-
ing with the header file UdpPacket.h from top to bottom. At first two protocol
header structs are defined. The UDP_HEADER struct defines the UDP header for-
mat. The struct UDP_PSEUDO_HEADER is the UDP pseudo-header that is used for
calculation of the UDP checksum. The IP address of the lower layer protocol is
normally included into the checksumming process. Because we support IPv4 and
IPv6 as an underlying protocol, the second part of the pseudo-header is defined
in the struct UDP_IP4_PSEUDO_HEADER and UDP_IP6_PSEUDO_HEADER, respectively.
The command #pragma pack (1) and #pragma pack () instructs the compiler not
to add any alignment between variables in the struct. Usually, it is open to the
compiler to perform such optimization, therefore we explicitely disallow this using
the pack command.

Then, the UdpPacket class definition is done including the mandatory methods men-
tioned above:

bool parsePacket ()

void assemblePacket ()

string toString ()

unsigned int getMinProtocolSize ()

In addition, several functions for getting and setting the protocol attributes exist.
These provide an easy interface for accessing protocol data:

unsigned short getSourceport ();

unsigned short getDestport ();

unsigned short getLen ();

unsigned short getChecksum ();

void setSourceport (unsigned short sp);

void setDestport (unsigned short dp);

void setLen (unsigned short len);

void setChecksum (unsigned short chksum);

6.1. Integrating additional protocols 19

Furthermore, two methods are declared that are needed especially in case of UDP
for calculating checksums. As the UDP pseudo-header used for checksumming needs
IP addresses, these two methods allow the IPv4/IPv6 parsers to explicitly set the
IP address for the UDP protocol:

void setIpAddresses (IP_ADDR source, IP_ADDR dest);

void setIpAddresses (IPV6_ADDR source, IPV6_ADDR dest);

The following two members of type AnonPrimitive* represent the anonymization
primitives for source port and destination port in the UDP protocol. They will be
set dynamically to the anonymization primitive specified in the configuration file:

static AnonPrimitive* anonSourceport;

static AnonPrimitive* anonDestport;

Finally, private members are declared. Here, mainly the header member is of inter-
est:

UDP_HEADER header;

It represents the UDP protocol header. This member will be used to store informa-
tion of the binary network data. The rest of the .h file contains special checksum
handling.

6.1.2 Implementation

Next, we look into the file UdpPacket.cpp that contains the implementation of the
method interfaces introduced in Section 6.1.1. The implementation will now be
detailed from top of the file to the bottom.

At first you can see the initialization of the two anonymization primitives that are
bound to the UDP parser in a static way:

AnonPrimitive* UdpPacket::anonSourceport = NULL;

AnonPrimitive* UdpPacket::anonDestport = NULL;

Then, the constructor of the UDP parser initializes its header member and sets the
Packet::protocol member to the protocol number the parser is responsible for:

UdpPacket::UdpPacket(void)

{

memset (&header, 0, sizeof (UDP_HEADER));

protocol = Packet::PROTO_UDP;

}

20 6. Extending PktAnon

The value Packet::PROTO_UDP must be defined in the file Packet.h to identify the
protocol a parser is responsible for.

Following, we look at the parsePacket method. It is called by PktAnon when pars-
ing has reached the corresponding protocol parser. The Packet::buffer variable
in this case holds the data that should be parsed by the protocol parser. Only the
data for exactly this protocol header is available within the buffer. Thus, the buffer
can be copied directly into the UDP_HEADER struct defined in UdpPacket.h:

memcpy (&header, buffer, sizeof (UDP_HEADER));

Each parsePacket method must do the following operations:

• Extract the data from Packet::buffer member.

• Set the Packet::nextProtocol member to the next higher protocol that has
been identified. The IpPacket parser class, for example, identifies the sub-
sequent protocol by an attribute in its header structure. The UDP parser
has no default way of identifying the following protocol. Therefore, the value
nextProtocol is set to the value Packet::PROTO_DATA_PAYLOAD. This indi-
cates that the remaining packet data is seen as pure payload data and parsed
using the PayloadPacket parser.

• The parser has to set the Packet::layersize member to the number of bytes
the protocol data uses. The UDP parser sets this to sizeof(UDP_HEADER).
IP or TCP parsers may have options that can only be identified during pars-
ing. Therefore the Packet::layersize may differ from the minimal protocol
header size.

Setting these three members is mandatory for protocol parsers in the parsePacket

method. A parser should extract all data of the given buffer and provide means
to easily get and set these values. This is done in the following methods of the
UdpPacket.cpp file, namely getSourceport, getDestport, setSourceport,

The mandatory assemblePacket method is the counterpart to the parsePacket

method. It is called when the output traffic is assembled and the protocol parser
class is requested to provide a binary representation of the current header. Here is
a partial listing of the assemblePacket method in case of the UDP protocol:

void UdpPacket::assemblePacket()

{

if (nextPacket != NULL)

nextPacket->assemblePacket ();

int thissize = sizeof (UDP_HEADER) ;

int nextsize = nextPacket != NULL ? nextPacket->getSize() : 0;

setSize (thissize + nextsize);

6.1. Integrating additional protocols 21

if (nextPacket != NULL)

memcpy (buffer + thissize, nextPacket->getBuffer(), nextsize);

setLen (thissize + nextsize);

// MISSING LISTING: calculate new checksum

memcpy (buffer, &header, sizeof (UDP_HEADER));

// ...

}

At first, the assembling of the higher layer protocol is requested. As the size of the
higher layer protocol may have changed due to anonymization, the size for the UDP
length attribute is recalculated and set in the header. Finally, the data of higher
layer protocols and the current header are copied into the given buffer.

6.1.3 Integration

6.1.3.1 Packet factory

PktAnon uses a memory object pool for protocol objects to boost performance.
Therefore we now integrate the UDP parser into the packet factory. This is done by
setting an #include in the file PacketFactory.h as follows:

#include "UdpPacket.h"

Next we add an object pool in the same file:

boost::object_pool <UdpPacket> poolUdpPacket;

This pool will be used in the createPacket method of the PacketFactory:

case Packet::PROTO_UDP:

ret = poolUdpPacket.construct ();

break;

and in the freePacket method:

case Packet::PROTO_UDP:

poolUdpPacket.destroy((UdpPacket*)packet);

break;

22 6. Extending PktAnon

6.1.3.2 Packet transformation

We now integrate the UDP protocol parser into the actual anonymization process
that transforms the original packet into an anonymous one. This is implemented in
the files Transformer.cpp and Transformer.h. First, we have a look at the header
file. At top of Transformer.h we add the include directive for the UDP protocol
parser: #include "packets/UdpPacket". Then, the transformPacket method is
overloaded in regard to the new class UdpPacket as follows:

void transformPacket (UdpPacket& inpkt, UdpPacket& ret);

This method is called in case an anonymization of the UDP protocol is required. In
the file Transformer.cpp we add the following code to the getTransformedPacket

method:

case Packet::PROTO_UDP:

transformPacket ((UdpPacket&)inpacket, (UdpPacket&)*newpkt);

break;

This will trigger the aforementioned transformPacket method, which is given two
parameters: the original packet and an empty packet. The actual transformation
method looks like:

void Transformer::transformPacket (UdpPacket& inpkt, UdpPacket& ret) {

ret.setLen (inpkt.getLen());

ret.setChecksum (inpkt.getChecksum());

unsigned short destport = inpkt.getDestport ();

UdpPacket::anonDestport->anonimizeBuffer (&destport,

sizeof (unsigned short));

ret.setDestport (destport);

unsigned short sourceport = inpkt.getSourceport ();

UdpPacket::anonSourceport->anonimizeBuffer (&sourceport,

sizeof (unsigned short));

ret.setSourceport (sourceport);

}

Purpose of this method is to get the values from the original packet inpkt, make
them anonymous, and set these anonymous values in the new ret packet. This
method does not explicitly need to know which anonymization primitives are applied
to the protocol attributes, e. g. to UdpPacket::anonDestport, in order to perform
the anonymization. Therefore, the code is simple and transparent for the actual
anonymization primitive.

As you can see, no values are deleted from the original packet. PktAnon applies a
mechanisms called defensive transformation, which first creates a new packet and
then fills this empty packet with anonymous values.

6.2. Integrating additional anonymization primitives 23

6.1.3.3 Anonymization primitive configuration

Anonymization primitives have to be attached to protocol attributes in order to
start the anonymization process. This is achieved in the file Configuration.cpp.
On top of the file the UDP parser definition: #include "packets/UdpPacket.h"

must be included. In addition, the name of the UDP configuration submodule in
the XML-based configuration (see Section 4.2) has to be given. We named it simply
”‘UdpPacket”’:

const string Configuration::ANON_SUBMODULE_UDP = "UdpPacket";

This constant name must also be defined in the file Configuration.h:

static const string ANON_SUBMODULE_UDP;

Finally, the anonymization primitives are bound to the UDP parser in the method
bindAnonPrimitives:

if (tconf.existsSubmodule (ANON_MODULE, ANON_SUBMODULE_UDP)) {

UdpPacket::anonSourceport= factory.create (

tconf.getConfigItemAttributes(

ANON_MODULE,

ANON_SUBMODULE_UDP,

"UdpSourceport"));

UdpPacket::anonDestport = factory.create (

tconf.getConfigItemAttributes(

ANON_MODULE,

ANON_SUBMODULE_UDP,

"UdpDestport"));

} else {

cout << "no udp configuration found" << std::endl;

exit (0);

}

Here the names of the anonymization primitives for ”‘UdpSourceport”’ and ”‘Ud-
pDestport”’ are read from the configuration file. The anonymization primitive ob-
jects are created by the factory and attached to the UDP protocol parser.

6.2 Integrating additional anonymization primi-

tives

In this section we explain how to write an additional anonymization primitive by
exemplarily analyzing the anonymization primitive AnonShuffle of PktAnon. This
primitive takes the input data and randomly shuffles all the bytes the input contains.

24 6. Extending PktAnon

6.2.1 Writing the primitive

The anonymization primitive AnonShuffle is defined in anonprimitives/AnonShuffle.h

and implemented in anonprimitives/AnonShuffle.cpp. Each anonymization prim-
itive is derived of the class AnonPrimitive and has to implement the following
method:

ANON_RESULT anonymize (void* buf, unsigned int len);

This method is called in order to actually perform anonymization. The result type
ANON_RESULT contains two values:

• ANON_RESULT::cont: Continue with anonymization in case of chained anonymiza-
tion primitives (see Section 2).

• ANON_RESULT::newlength: New length of the data buffer in case the anonymiza-
tion process changed the original length (like AnonShorten, see Section 2).

The implementation of the AnonShuffle primitive in the file AnonShuffle.cpp looks
as follows:

AnonPrimitive::ANON_RESULT AnonShuffle::anonymize (void* buf,

unsigned int len) {

vector<unsigned char> permvector;

for (unsigned int i=0; i<len; i++)

permvector.push_back (*(((unsigned char*) buf) + i));

random_shuffle (permvector.begin (), permvector.end ());

for (unsigned int i=0; i<len; i++)

memset ((unsigned char*) buf + i, permvector.at (i), 1);

return ANON_RESULT (len);

}

The method anonymize takes the data buffer that should be made anonymous.
Then, random permutations of the single bytes are performed and the result is writ-
ten back into the buffer. The return value, finally, contains the original length since
it was not change during anonymization. In addition, the return value indicates that
the anonymization should be continued in case of chained primitives (this construc-
tor of ANON_RESULT implicitly sets cont to true).

6.2.2 Integrating the primitive

Having implemented the functionality of the anonymization primitive, it must be in-
tegrated into PktAnon. Therefore, the include statement #include "AnonShuffle.h"

must be added to the file AnonFactory.cpp. In addition, the AnonFactory::create
method in the file AnonFactory.cpp is extended by the following lines:

6.2. Integrating additional anonymization primitives 25

else if (name.compare ("AnonShuffle") == 0) {

primitive = new AnonShuffle ();

}

These lines are necessary to actually create the anonymization primitive in PktAnon.
Afterwards, it can be used in the XML configuration file for anonymization of certain
protocol attributes.

	Contents
	1 Introduction
	2 Anonymization primitives
	3 Supported protocols
	4 Anonymization profiles
	4.1 Settings
	4.1.1 Flow
	4.1.2 Misc
	4.1.3 Checksumming

	4.2 AnonMappings
	4.3 Predefined profiles
	4.3.1 Exemplary anonymization profile

	5 Using PktAnon
	5.1 Compiling PktAnon
	5.2 Running PktAnon
	5.3 I/O Piping with PktAnon

	6 Extending PktAnon
	6.1 Integrating additional protocols
	6.1.1 Interfaces
	6.1.2 Implementation
	6.1.3 Integration
	6.1.3.1 Packet factory
	6.1.3.2 Packet transformation
	6.1.3.3 Anonymization primitive configuration

	6.2 Integrating additional anonymization primitives
	6.2.1 Writing the primitive
	6.2.2 Integrating the primitive

